Latest Articles

12 articles
Active filters: Past Month × Nature Aging ×

N
Nature Aging · Nov 26, 2025

Organ-specific proteomic aging clocks predict disease and longevity across diverse populations

Aging and age-related diseases share convergent pathways at the proteome level. Here, using plasma proteomics and machine learning, we developed organismal and ten organ-specific aging clocks in the UK Biobank (n = 43,616) and validated their high accuracy in cohorts from China (n = 3,977) and the USA (n = 800; cross-cohort r = 0.98 and 0.93). Accelerated organ aging predicted disease onset, progression and mortality beyond clinical and genetic risk factors, with brain aging being most strongly linked to mortality. Organ aging reflected both genetic and environmental determinants: brain aging was associated with lifestyle, the GABBR1 and ECM1 genes, and brain structure. Distinct organ-specific pathogenic pathways were identified, with the brain and artery clocks linking synaptic loss, vascular dysfunction and glial activation to cognitive decline and dementia. The brain aging clock further stratified Alzheimer’s disease risk across APOE haplotypes, and a super-youthful brain appears to confer resilience to APOE4. Together, proteomic organ aging clocks provide a biologically interpretable framework for tracking aging and disease risk across diverse populations. Wang, Xiao and colleagues develop and validate organ-specific proteomic aging clocks across large population cohorts in the UK, the USA and China, which show strong performance in tracking organ aging and predicting the risk of morbidity and mortality.

Ageing Endocrine system and metabolic diseases Neurological disorders Predictive markers Psychiatric disorders biology








N
Nature Aging · Nov 17, 2025

Single-cell analysis of the somatic mutational landscape in human chondrocytes during aging and in osteoarthritis

Somatic mutation is now recognized as a cause of multiple human diseases other than cancer. Osteoarthritis (OA), a highly prevalent age-related disease, has been associated with increased chromosomal abnormalities in articular cartilage. Here we characterize the somatic mutational landscape of chondrocytes during normal aging and in affected cartilage of patients with OA. We used single-cell whole-genome sequencing to analyze single-nucleotide variants (SNVs) and small insertions and deletions (InDels) in 100 chondrocytes isolated from the cartilage of hip femoral heads of 17 research participants aged 26−90 years, including 9 patients with OA and 8 non-OA donors. Both SNVs and InDels accumulate with age in chondrocytes with a clock-like mutational signature. Surprisingly, the age-related accumulation rate in OA chondrocytes is lower than that in non-OA control chondrocytes. Differences in mutational signatures and Gene Ontology term enrichment were found between OA and non-OA control samples. In this study, to understand the role of somatic mutation in the pathogenesis of OA, we characterized somatic SNV and InDel mutations. With further progress in analytical approaches, structural variations in the chondrocyte genome are also expected to provide valuable information. Somatic mutations accumulate with age and have been linked to functional decline and disease. Single-cell analysis of human cartilage samples from donors with and without osteoarthritis shows that somatic mutations accumulate with age, but, in osteoarthritis, they show distinct mutational patterns and slower accumulation, possibly due to DNA-damage-induced chondrocyte death.

Ageing Genomic instability biology

N
Nature Aging · Nov 10, 2025

Multilingualism protects against accelerated aging in cross-sectional and longitudinal analyses of 27 European countries

Aging trajectories are influenced by modifiable risk factors, and prior evidence has hinted that multilingualism may have protective potential. However, reliance on suboptimal health markers, small samples, inadequate confounder control and a focus on clinical cohorts led to mixed findings and limited applicability to healthy populations. Here, we developed biobehavioral age gaps, quantifying delayed or accelerated aging in 86,149 participants across 27 European countries. National surveys provided individual-level positive (functional ability, education, cognition) and adverse (cardiometabolic conditions, female sex, sensory impairments) factors, while country-level multilingualism served as an aggregate exposure. Biobehavioral factors predicted age (R2= 0.24,r= 0.49, root mean squared error = 8.61), with positive factors linked to delayed aging and adverse factors to accelerated aging. Multilingualism emerged as a protective factor in cross-sectional (odds ratio = 0.46) and longitudinal (relative risk = 0.70) analyses, whereas monolingualism increased risk of accelerated aging (odds ratio = 2.11; relative risk = 1.43). Effects persisted after adjusting for linguistic, physical, social and sociopolitical exposomes. These results underscore the protective role of multilingualism and its broad applicability for global health initiatives.

Ageing Biomarkers Computational biology and bioinformatics other