Latest Articles

7 articles
Active filters: Nature Genetics × Transcriptomics ×



N
Nature Genetics · Oct 03, 2025

Dissecting the impact of transcription factor dose on cell reprogramming heterogeneity using scTF-seq

Reprogramming often yields heterogeneous cell fates, yet the underlying mechanisms remain poorly understood. To address this, we developed single-cell transcription factor sequencing (scTF-seq), a single-cell technique that induces barcoded, doxycycline-inducible TF overexpression and quantifies TF dose-dependent transcriptomic changes. Applied to mouse embryonic multipotent stromal cells, scTF-seq generated a gain-of-function atlas for 384 mouse TFs, identifying key regulators of lineage specification, cell cycle control and their interplay. Leveraging single-cell resolution, we uncovered how TF dose shapes reprogramming heterogeneity, revealing both dose-dependent and stochastic cell state transitions. We classified TFs into low-capacity and high-capacity groups, with the latter further subdivided by dose sensitivity. Combinatorial scTF-seq demonstrated that TF interactions can shift from synergistic to antagonistic depending on the relative dose. Altogether, scTF-seq enables the dissection of TF function, dose and cell fate control, providing a high-resolution framework to understand and predict reprogramming outcomes, advancing gene regulation research and the design of cell engineering strategies. This study introduces single-cell transcription factor (TF) sequencing, a single-cell barcoded and doxycycline-inducible TF overexpression approach that reveals dose-sensitive functional classes of TFs and cellular heterogeneity by mapping TF dose-dependent transcriptomic changes during the reprogramming of mouse embryonic multipotent stromal cells.

Bioinformatics High-throughput screening RNA sequencing Stem cells Transcriptomics Single-cell Mouse Cell Biology Genomics Developmental Biology