Latest Articles

3 articles
Active filters: Nature Methods × Cancer ×


N
Nature Methods · Sep 15, 2025

Cancer subclone detection based on DNA copy number in single-cell and spatial omic sequencing data

Somatic mutations such as copy number alterations accumulate during cancer progression, driving intratumor heterogeneity that impacts therapy effectiveness. Understanding the characteristics and spatial distribution of genetically distinct subclones is essential for unraveling tumor evolution and improving cancer treatment. Here we present Clonalscope, a subclone detection method using copy number profiles, applicable to spatial transcriptomics and single-cell sequencing data. Clonalscope implements a nested Chinese Restaurant Process to identify de novo tumor subclones, which can incorporate prior information from matched bulk DNA sequencing data for improved subclone detection and malignant cell labeling. On single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin using sequencing data from gastrointestinal tumors, Clonalscope successfully labeled malignant cells and identified genetically different subclones with thorough validations. On spatial transcriptomics data from various primary and metastasized tumors, Clonalscope labeled malignant spots, traced subclones and identified spatially segregated subclones with distinct differentiation levels and expression of genes associated with drug resistance and survival.

Cancer genomics Genomics Software Statistical methods Tumour heterogeneity Cancer Single-cell Genomics Machine Learning Drug Development