Latest Articles

66 articles
Active filters: Nature Neuroscience ×




N
Nature Neuroscience · Dec 02, 2025

High-frequency bursts facilitate fast communication for human spatial attention

Brain-wide communication supporting flexible behavior requires coordination between sensory and associative regions but how brain networks route sensory information at fast timescales to guide action remains unclear. Using human intracranial electrophysiology and spiking neural networks during spatial attention tasks, where participants detected targets at cued locations, we show that high-frequency activity bursts (HFAbs) mark temporal windows of elevated population firing that enable fast, long-range communications. HFAbs were evoked by sensory cues and targets, dynamically coupled to low-frequency rhythms. Notably, both the strength of cue-evoked HFAbs and their decoupling from slow rhythms predicted behavioral accuracy. HFAbs synchronized across the brain, revealing distinct cue- and target-activated subnetworks. These subnetworks exhibited lead–lag dynamics following target onset, with cue-activated subnetworks preceding target-activated subnetworks when cues were informative. Computational modeling suggested that HFAbs reflect transitions to population spiking, denoting temporal windows for network communications supporting attentional performance. These findings establish HFAbs as signatures of population state transitions, supporting information routing across distributed brain networks.

Attention Biophysical models Cognitive control Perception Sensory processing

























N
Nature Neuroscience · Oct 31, 2025

TDP-43-dependent mis-splicing ofKCNQ2triggers intrinsic neuronal hyperexcitability in ALS/FTD

Motor neuron hyperexcitability is a broadly observed yet poorly understood feature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Nuclear depletion and cytoplasmic aggregation of the RNA splicing protein TAR DNA-binding protein 43 (TDP-43) are observed in most ALS and FTD patients. Here we show that TDP-43 dysfunction causes mis-splicing ofKCNQ2, which encodes a voltage-gated potassium channel (Kv7.2) that regulates neuronal excitability. Using iPSC-derived neurons and postmortem ALS/FTD brain and spinal cord tissue we find widespread, disease-specific and TDP-43-specific skipping of an exon encoding the KCNQ2 pore domain. The mis-spliced mRNA escapes degradation and is translated into a nonfunctional protein with severely reduced ion conductance that aggregates in the endoplasmic reticulum and causes intrinsic hyperexcitability in ALS neuronal models. This event, which correlates with higher phosphorylated TDP-43 levels and earlier age of disease onset in patients, can be rescued by splice-modulating antisense oligonucleotides that dampen hyperexcitability in induced pluripotent stem cell cortical neurons and spinal motor neurons with TDP-43 depletion. Our work reveals that nuclear TDP-43 maintains the fidelity ofKCNQ2expression and function and provides a mechanistic link between established excitability disruption in ALS/FTD patients and TDP-43 dysfunction.

Amyotrophic lateral sclerosis Ion channels in the nervous system







N
Nature Neuroscience · Oct 27, 2025

Prediction of neural activity in connectome-constrained recurrent networks

Recent technological advances have enabled measurement of the synaptic wiring diagram, or ‘connectome’, of large neural circuits or entire brains. However, the extent to which such data constrain models of neural dynamics and function is debated. In this study, we developed a theory of connectome-constrained neural networks in which a ‘student’ network is trained to reproduce the activity of a ground truth ‘teacher’, representing a neural system for which a connectome is available. Unlike standard paradigms with unconstrained connectivity, the two networks have the same synaptic weights but different biophysical parameters, reflecting uncertainty in neuronal and synaptic properties. We found that a connectome often does not substantially constrain the dynamics of recurrent networks, illustrating the difficulty of inferring function from connectivity alone. However, recordings from a small subset of neurons can remove this degeneracy, producing dynamics in the student that agree with the teacher. Our theory demonstrates that the solution spaces of connectome-constrained and unconstrained models are qualitatively different and determines when activity in such networks can be well predicted. It can also prioritize which neurons to record to most effectively inform such predictions. The authors show that connectome datasets alone are generally not sufficient to predict neural activity. However, pairing connectivity information with neural recordings can produce accurate predictions of activity in unrecorded neurons.

Dynamical systems Network models Neural circuits Population dynamics











N
Nature Neuroscience · Oct 13, 2025

Psychedelic 5-HT2Areceptor agonism alters neurovascular coupling and differentially affects neuronal and hemodynamic measures of brain function

Human neuroimaging studies report that psychedelics induce serotonin-2A receptor-dependent changes in functional brain reorganization, presumably reflecting neuromodulation. However, these studies often overlook the potent vasoactive effects of serotonin. Here we identified psilocybin-induced alterations in hemodynamic response functions during human functional magnetic resonance imaging, suggesting potential disruptions in neurovascular coupling. We then used wide-field optical imaging in awake Thy1-jRGECO1a mice to determine whether psychedelic-induced changes in hemodynamics arise from neuronal, vascular or neurovascular effects. Exposure to the psychedelic 2,5-dimethoxy-4-iodoamphetamine (DOI) differentially altered coupling between cortical excitatory neuronal versus hemodynamic activity, both during whisker stimulation and in the resting state. Furthermore, DOI resulted in discordant changes between neuronal-based versus hemodynamic-based assessments of functional connectivity. A selective serotonin-2A receptor antagonist (MDL100907) reversed many of the effects of DOI. Our results demonstrate a dissociation between DOI-induced neuronal and hemodynamic signals, indicating a need to consider neurovascular effects of psychedelics when interpreting blood-based measures of brain function.

Neural circuits Neuro–vascular interactions










N
Nature Neuroscience · Sep 15, 2025

Augmenting AMPA receptor signaling after spinal cord injury increases ependymal-derived neural stem/progenitor cell migration and promotes functional recovery

Ependymal cells in the adult spinal cord become activated after spinal cord injury (SCI), gaining stem/progenitor cell properties. Although growing evidence has implicated these cells as potential players in the endogenous repair process after injury, their activation to a stem-cell-like state is transient and insufficient for adequate regeneration. Moreover, the drivers of their activation state remain largely unknown. Previous work suggested that AMPA receptors (AMPARs) regulate cultured ependymal-derived neural stem/progenitor cells (epNSPCs). In this study, we identified an AMPAR-dependent mechanism of epNSPC regulation after SCI. Using lineage tracing in adult mice, we demonstrate that conditional knockout of GluA1–GluA3 AMPAR subunits in epNSPCs abolishes glutamate-induced AMPA currents and impairs the acute activation of these cells after SCI. Augmenting AMPAR signaling with the ampakine CX546 alters the transcriptional profile of epNSPCs, maintaining their acute maturation reversal after SCI into the chronic injury period, increasing connexin-43 signaling, promoting their migratory capacity and enhancing ependymal–glial cell contacts, which may contribute to the spatial distribution and migratory pattern of ependymal cells after injury. CX546 treatment ameliorates the subacute decrease in corticospinal tract excitability after SCI and leads to long-term functional improvements. Together, this work identifies a neurotransmitter receptor-dependent mechanism of epNSPC activation after injury, which may be targeted to harness the regenerative potential of the spinal cord.

Spinal cord injury Stem cells in the nervous system